This site uses cookies.
Some of these cookies are essential to the operation of the site,
while others help to improve your experience by providing insights into how the site is being used.
For more information, please see the ProZ.com privacy policy.
This person has a SecurePRO™ card. Because this person is not a ProZ.com Plus subscriber, to view his or her SecurePRO™ card you must be a ProZ.com Business member or Plus subscriber.
Afiliaciones
This person is not affiliated with any business or Blue Board record at ProZ.com.
Servicios
Translation, Editing/proofreading, Subtitling
Especialización
Se especializa en
Ciencias (general)
Medioambiente y ecología
Química, Ciencias/Ing. quím.
Ingeniería (general)
Ingeniería: industrial
Geología
Manufactura
Cocina / Gastronomía
Cosméticos / Belleza
Folklore
También trabaja en
Lingüística
Música
Textil / Ropa / Moda
Medicina: Instrumentos
Medicina: Salud
Medicina (general)
Nutrición
Agricultura
Biología (biotecnología/química, microbiología)
Botánica
Energía / Producción energética
Minería y minerales / Gemas
Filosofía
Psicología
Zoología
Meteorología
Cine, películas, TV, teatro
Internet, comercio-e
Mercadeo / Estudios de mercado
Imprenta y publicación
Venta al detalle
Viajes y turismo
Educación / Pedagogía
Alimentos y bebidas
Muebles / Aparatos domésticos
Juegos / Videojuegos / Apuestas / Casino
General / Conversación / Saludos / Cartas
Gobierno / Política
Historia
Org./Desarr./Coop. Internacional
More
Less
Tarifas
Payment methods accepted
PayPal, Transferencia electrónica
Muestrario
Muestras de traducción: 1
inglés al español: Insulin-releasing switch discovered (ScienceDaily) General field: Ciencias Detailed field: Biología (biotecnología/química, microbiología)
Texto de origen - inglés Johns Hopkins researchers believe they have uncovered the molecular switch for the secretion of insulin – the hormone that regulates blood sugar – providing for the first time an explanation of this process. “Before our discovery, the mechanism behind how exactly the insulin-producing beta cells in the islet of Langerhans of the pancreas fail in type 2 diabetes was incompletely understood, making it difficult to design new and better therapies,” says Mehboob Hussain, M.D., associate professor of pediatrics, medicine and biological chemistry. “Our research cracks open a decades-long mystery.” After a meal, the pancreas produces insulin to move glucose from the blood into cells for fuel. People with type 2 diabetes either don’t secrete enough insulin or their cells are resistant to its effects.
In a study designed to figure out more precisely how the pancreas releases insulin, Hussain’s group looked at how other cells in the body release chemicals. One particular protein, Snapin, found in nerve cells, caught their eye because it’s used by nerve cells to release chemicals necessary for cell communication. Snapin is also found in the insulin-secreting pancreatic beta cells. To test the role of Snapin, researchers engineered a change to the Snapin gene in mice to keep Snapin permanently “on” in the pancreas. Researchers removed the pancreas cells and grew them in a dish for a day, then added glucose to the cells and took samples to measure how much insulin was released. When the scientists compared that measurement to what was released by pancreas cells in normal mice, they found that normal mice released about 2.8 billionths of a gram of insulin per cell, whereas the cells from “Snapin-on” mice released 7.3 billionths of a gram of insulin per cell – about three times the normal amount. “We were surprised to find that the Snapin-on mice didn’t have more or bigger pancreas cells, they just made more insulin naturally,” says Hussain. “This means all our insulin-secreting cells have this amazing reserve of insulin that we didn’t really know existed and a switch that controls it.”
To see if permanently turning off Snapin would reduce insulin release and further demonstrate that Snapin controls the process, the researchers first grew normal mouse pancreas cells in a dish, and treated them with a chemical that stopped them from making the Snapin protein. They again bathed the cells in glucose and measured how much insulin was released by the cells. Normal cells released 5.8 billionths of a gram of insulin, whereas cells with no Snapin only released 1.1 billionths of a gram of insulin – about 80 percent less. “These results convinced us that Snapin is indeed the switch that releases insulin from the pancreas,” says Hussain.
Traducción - español Los investigadores de la Universidad de John Hopkins creen haber descubierto cuál es el interruptor molecular para la secreción de la insulina —la hormona que regula el azúcar en la sangre—. Esta sería la primera vez que se aporta una explicación a este proceso. "Antes de nuestro descubrimiento, el mecanismo exacto que se encuentra detrás de las células beta que producen insulina en los islotes de Langerhans era completamente desconocido, lo cual dificultaba el diseño de tratamientos nuevos y mejores", apunta Mehboob Hussain, doctor en Medicina y profesor asociado de pediatría, medicina y química biológica. "Nuestra investigación resuelve un misterio que llevaba sin explicación desde hace décadas". Después de ingerir comida, el páncreas produce insulina para trasladar la glucosa de la sangre hacia las células, como combustible. En las personas con diabetes de tipo 2 se dan dos escenarios: o bien no segregan suficiente insulina o sus células son resistentes a sus efectos.
En un estudio cuyo objetivo era descubrir cómo libera la insulina el páncreas de forma precisa, el equipo de Hussain se centró en observar cómo se comportan otras células del cuerpo a la hora de liberar sustancias químicas. Una proteína en concreto, llamada esnapina y que se encuentra en las células nerviosas, llamó su atención ya que la utilizan las células nerviosas para liberar las sustancias químicas necesarias para la comunicación celular. La esnapina también se encuentra en las células beta del páncreas que segregan insulina. Para probar cuál es el papel de la esnapina, los investigadores introdujeron una modificación en el gen de la esnapina en ratones, con el objetivo de mantener a la esnapina activa constantemente en el páncreas. Los investigadores cogieron células del páncreas y las pusieron en cultivo en una placa durante un día, seguidamente, añadieron glucosa a las células y tomaron muestras para medir cuánta insulina se había liberado. Los científicos compararon entonces qué cantidad se había segregado en las diferentes células del páncreas y el resultado fue el seguiente: en los ratones normales se había liberado 2,8 milmillonésimas partes de un gramo de insulina por célula, mientras que en los ratones que tenían la esnapina "activada", se había segregado 7,3 milmillonésimas partes de un gramo de insulina por célula — aproximadamente tres veces más que la cantidad normal—. "Nos sorprendió descubrir que los ratones con esnapina activada no tenían más cantidad de células pancreáticas y que estas tampoco eran más grandes; simplemente producían más insulina de forma natural", observa Hussain. "Esto significa que todas las células que segregan insulina contienen una reserva asombrosa de la que no eramos conscientes, y que también tienen un interruptor que la controla".
Con el objetivo de comprobar si desactivando la esnapina se reduciría la liberación de insulina y para reforzar la idea de que la esnapina controla este proceso, los investigadores realizaron un cultivo de células de ratones normales primero, y las trataron con una sustancia química que bloquea la producción de la proteína esnapina. Una vez más, bañaron las células en glucosa y midieron qué cantidad de insulina habían liberado las células. Las células normales habían liberado 5,8 milmillonésimas partes de un gramo de insulina, mientras que las células sin esnapina habían segregado solamente 1,1 milmillonésimas partes de un gramo de insulina —alrededor de un 80 por ciento menos—. "Estos resultados nos convencieron de que la esnapina es, en efecto, el interruptor que libera la insulina del páncreas", afirma Hussain.
More
Less
Formación en el ámbito de la traducción
Graduate diploma - DIPTRANS by the CIOL
Experiencia
Años de experiencia: 9 Registrado en ProZ.com: Mar 2020
Adobe Acrobat, MemSource Cloud, Microsoft 365, Microsoft Excel, Microsoft Word, OmegaT, Powerpoint
CV/Resume
CV available upon request
Bio
'I am a certified translator with a multicultural
background and years of experience in specialised translation, as well as a
passion for my field'
- DIPTRANS, Postgraduate Diploma in Translation by the CIOL
- Bachelor's Degree in
English Philology by the University of Barcelona
- Member of the Chartered
Institute of Linguists
- Level 3 Community
Interpreting
- Over 5 years of experience in both general and specialised translation (Science, Technology)
My skills involve a proficient knowledge of several
languages and the ability to translate
in different language combinations. I hold the DIPTRANS by the CIOL and a BA Degree in English Philology. I
benefit from a multicultural background, having lived in Spain, Belgium, Luxembourg
and the UK. Throughout my studies and work experience I have proven the ability
to perform under pressure with tight deadlines, to overcome challenges and
deliver excellence in my field of expertise. I am highly motivated and I enjoy
the challenges and stimulation. I am passionate for what I do and I seek
excellence in my field. Translation is much more than replacing a word for its equivalent one in a different language.
My experience in translation covers different areas of specialisation: